Как работает аэс? опасны ли атомные станции?

Какие проблемы, связанные с атомной отраслью, возникали в России?

В 2011 году на строящейся ЛАЭС-2 произошел обвал металлических конструкций (вес около 1200 тонн). В ходе надзорной комиссии обнаружилась поставка несертифицированной арматуры, в связи с чем были приняты следующие меры:

  • наложение штрафа на ЗАО «ГМЗ-Химмаш» в размере 30 тыс. руб.;
  • выполнение расчетов и проведение работ, направленных на усиление арматуры.

По мнению Ростехнадзора, главной причиной нарушения является недостаточный уровень квалификации специалистов «ГМЗ-Химмаш». Слабое знание требований федеральных норм, технологий изготовления подобного оборудования и  конструкторской документации привело к тому, что многие подобные организации лишились лицензий.

В Калининской АЭС повысился уровень тепловой мощности реакторов. Такое событие крайне нежелательно, так как появляется вероятность возникновения аварии с серьезными радиационными последствиями.

Многолетние исследования, проведенные в зарубежных странах, показали, что соседство с АЭС приводит к росту заболеваний лейкемией. По этой причине в России было множество отказов от эффективных, но очень опасных проектов.

Территории, где произошли аварии с выбросом радиации (Россия и СССР)

1957

ЗАТО Озерск, Челябинская об.

Кыштымская авария (ПО «Маяк»)

Тепловой взрыв, приведший к выбросу большого количества высокоактивных отходов и образованию Восточно-Уральского радиоактивного следа

В атмосферу было выброшено около 20 млн кюри радиоактивных веществ. Они выпали на протяжении 300—350 км в северо-восточном направлении от места взрыва. Территория, подвергшаяся радиоактивному загрязнению получила название Восточно-Уральский радиоактивный след (ВУРС).

1982

губа Андреева, Мурманская об.

Авария на хранилище отработавшего ядерного топлива

В воды Баренцева моря вытекло около 700 000 тонн радиоактивных компонентов. Расстояние до Мурманска — 55 км, до границы Норвегии 60 км.

1985

Приморский край

Авария в бухте Чажма на атомной подводной лодки К-431

Привела к 11 гибели людей, сотням облученных и к загрязнению окружающей среды

В эпицентре взрыва уровень радиации составлял 90 000 рентген в час. Сформировался очаг радиоактивного загрязнения дна акватории бухты Чажма площадью около 100 000 м². В непосредственной близости располагается пгт Дунай. Расстояние до крупных городов: Находки и Владивостока — 45 км.

1986

Припять, Киевская об., Украина

Авария на Чернобыльской АЭС

Крупнейшая в мировой истории радиационная авария

В атмосферу было выброшено около 380 млн кюри радиоактивных веществ

1993

г. Северск, Томская об.

Авария на радиохимическом заводе Сибирского химического комбината

6 апреля на заводе РХЗ произошел взрыв парогазовой смеси, в результате которого был разрушен один из аппаратов по экстракции урана и плутония, содержавший раствор нитрата уранила. Часть плутония и других радиоактивных веществ была выброшена в атмосферу. Радиоактивному загрязнению подверглись промышленные территории, хвойный лес и деревня Георгиевка. В это время шёл снег, он захватил часть выброшенных радионуклидов, осадив их на участке в радиусе 9 км. Радиационный фон после взрыва составил до 300 микрорентген в час.

2019

с. Ненокса, Архангельская об.

Авария на морской платформе в акватории Белого моря

Вблизи села Ненокса на военном полигоне прошли неудачные испытания нового оружия, которые закончились гибелью 7 человек, еще 6 участников пострадали. Был зафиксирован кратковременный скачок радиационного фона до 2 мкЗв/ч. Расстояние до ближайшего крупного города: Северодвинск — 30 км.

Аварии с выбросом радиоактивных веществ — угроза для всего живого

Ошибочно полагать, что радиоактивность связана со строительством атомных электростанций и появлением ядерного оружия.

Радиоактивность и постоянный её спутник — ионизирующее излучение — существовали на нашей планете с самого начала её времен — тогда, когда жизни на ней даже в помине ещё не было.

Открытие же радиации как явления произошло более ста лет назад, благодаря французскому физику А.Беккерелю, впервые наблюдавшему проникающее излучение, испускаемое ураном, которое он назвал радиоактивным.

Источники ионизирующих излучений и радиоактивные вещества в настоящее время применяются практически везде, динамично развивается ядерная энергетика.

Они таят в себе колоссальные возможности, в них же заключена и огромная опасность для окружающей среды и людей.

Свидетельство тому — крупные радиационные аварии (взять хотя бы одну из наиболее масштабных катастроф прошлого века — аварию на Чернобыльской АЭС).

Понятие о радиационной аварии

Радиационной аварией называют аварию на радиационно опасном объекте, результатом которой является выброс в окружающую среду радиоактивных продуктов и ионизирующего излучения в количествах, превышающих допустимые нормы. Зону риска составляют следующие виды объектов:

  • Атомные электростанции и атомные энергетические установки, выполняющие производственные и исследовательские задачи;
  • Предприятия ядерно-топливного цикла;
  • Средства транспорта и космические аппараты, имеющие на своем борту радиоактивный груз или оснащенные ядерными установками;
  • Зоны хранения, нахождения или установки ядерных боеприпасов;
  • Места проведения ядерных взрывов с промышленной или испытательной целью.

Классификация

Радиационные аварии принято делить на классы, исходя из их масштабов. В зависимости от границ распространения радиоактивных веществ и возможных последствий катастрофы, выделяют аварии:

  • Локальные. Нарушается работа радиационно опасного объекта, но выброс радиоактивных веществ и ионизирующего излучение не превышает установленные для нормальной эксплуатации предприятия нормы.
  • Местные. Нарушается работа радиационно опасного объекта, выброс радиоактивных продуктов выходит за границы санитарно-защитной зоны и превышает нормальные значения, установленные для этого предприятия.
  • Общие. Нарушается работа объекта, выброс радиоактивных веществ и излучения выходит за границы санитарно-защитной зоны, превышает допустимые показатели и приводит к радиоактивному загрязнению прилегающих территорий и возможному облучению населения.

В зависимости от технических последствий, радиационные аварии подразделяются на:

  • Проектные — возможность возникновения аварии предусмотрена техническим проектом ядерной установки. Предвиденная авария, которую относительно легко устранить.
  • Запроектные — возможная авария, возникновение которой не заложено в техническом проекте.
  • Гипотетические — авария с последствиями, которые сложно предугадать.
  • Реальная — состоявшаяся авария.

Аварии с выбросом радиации также происходят либо с разрушением ядерного реактора, либо без его разрушения.

Причины радиационных аварий

Исходных причин, приводящих к авариям на радиационно опасных объектах, может быть много. Условно выделяются три ключевых группы:

  1. Отказ оборудования из-за несовершенства конструкции установки, ошибки во время его изготовления, монтажа или эксплуатации.
  2. Ошибка персонала предприятия, нарушение эксплуатационных правил.
  3. Внешние факторы (стихийные бедствия, поражение оружием, диверсионные акты и др.).

Течение радиационной аварии

Течение аварии с выбросом радиоактивных веществ включает в себя четыре фазы:

  1. Начальная фаза. Первая фаза радиационной аварии называется начальной. Быстротечная период, когда ещё не наблюдается выброс радиоактивных продуктов в окружающую среду. Может быть обнаружена возможность облучения населения, проживающего за границами санитарно-защитной зоны радиационного объекта.
  2. Ранняя фаза. Период продолжается от несколько минут и часов (разовый выброс) до нескольких суток (продолжительный выброс). Происходит сброс радиации в окружающую среду и населенную людьми территорию.
  3. Средняя фаза. Период продолжается от нескольких дней до года. Особенность — дополнительный выброс радиоактивных продуктов не наблюдается.
  4. Поздняя фаза. Период восстановления, когда население возвращается к нормальной и привычной жизнедеятельности. Фаза занимает несколько недель, лет или даже десятилетий — в зависимости от особенностей радиоактивного загрязнения. Начинается она после того, как отпадает необходимость выполнять защитные меры.

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.

Белоярская АЭС

Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.

Курская АЭС

Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции — 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Ветроэнергетика

Запасов энергии ветра в 100 раз больше запасов энергии всех рек на планете. Ветровые станции помогают преобразовывать ветер в электрическую, тепловую и механическую энергию. Главное оборудование – ветрогенераторы (для образования электричества) и ветровые мельницы (для механической энергии).

Этот вид возобновляемой энергии хорошо развит – особенно в Дании, Португалии, Испании, Ирландии и Германии. К началу 2016 года мощность всех ветрогенераторов обогнала суммарную установленную мощность атомной энергетики.

Недостаток в том, что её нельзя контролировать (сила ветра непостоянна). Ещё ветроустановки могут вызывать радиопомехи и влиять на климат, потому что забирают часть кинетической энергии ветра – правда, учёные пока не знают хорошо это или плохо.

выгода

Высокая плотность энергии

Уран — это элемент, который обычно используется на атомных станциях для производства электроэнергии. Это свойство хранить огромное количество энергии.

Один грамм урана равен 18 литрам бензина, а один килограмм дает примерно ту же энергию, что и 100 тонн угля (Castells, 2012).

Дешевле, чем ископаемое топливо 

В принципе, стоимость урана, кажется, намного дороже, чем нефть или бензин, но если принять во внимание, что для выработки значительного количества энергии требуются лишь небольшие количества этого элемента, в конечном итоге стоимость становится ниже, чем это ископаемого топлива

доступность 

Атомная электростанция обладает способностью работать постоянно, 24 часа в сутки, 365 дней в году, чтобы снабжать город электричеством; это благодаря периоду заправки это каждый год или 6 месяцев в зависимости от завода.

Другие виды энергии зависят от постоянного запаса топлива (например, угольные электростанции) или периодически или ограничены климатом (например, возобновляемые источники).

Он выделяет меньше парниковых газов, чем ископаемое топливо

Атомная энергия может помочь правительствам выполнить свои обязательства по сокращению выбросов парниковых газов. Процесс эксплуатации на атомной станции не выделяет парниковых газов, поскольку не требует использования ископаемого топлива..

Тем не менее, выбросы происходят в течение всего жизненного цикла установки; строительство, эксплуатация, добыча и переработка урана и демонтаж АЭС. (Sovacool, 2008).

Из наиболее важных исследований, проведенных для оценки количества CO2, выделяемого в результате ядерной деятельности, среднее значение составляет 66 г CO2e / кВтч. Это значение выбросов больше, чем у других возобновляемых ресурсов, но все же ниже, чем у ископаемых видов топлива (Sovacool, 2008).

Не хватает места

Атомной установке требуется мало места по сравнению с другими видами энергетической деятельности; для установки ректора и градирен требуется лишь относительно небольшой участок земли.

Напротив, для деятельности в области ветровой и солнечной энергии потребовалась бы большая земля для производства той же энергии, что и для атомной электростанции, в течение всего срока ее полезного использования.

Создает мало отходов

Отходы, образующиеся на атомной электростанции, чрезвычайно опасны и вредны для окружающей среды. Тем не менее, количество относительно мало по сравнению с другими видами деятельности, и используются адекватные меры безопасности, которые могут оставаться изолированными от окружающей среды, не представляя никакого риска.

Технология все еще в разработке

Есть еще много нерешенных проблем, связанных с атомной энергией. Однако в дополнение к делению существует еще один процесс, называемый ядерным синтезом, который включает в себя соединение двух простых атомов вместе с образованием тяжелого атома..

Развитие ядерного синтеза направлено на использование двух атомов водорода для производства одного из гелия и генерации энергии, это та же самая реакция, которая происходит на солнце.

Для осуществления ядерного синтеза требуются очень высокие температуры и мощная система охлаждения, которая создает серьезные технические трудности и все еще находится на стадии разработки..

В случае его реализации это будет означать более чистый источник, поскольку он не будет производить радиоактивные отходы, а также будет генерировать гораздо больше энергии, чем в настоящее время производится путем деления урана..

Атомная (ядерная) энергия — это… Простыми словами

Ядерная энергия — тип энергии, высвобождающейся из ядра — центральной части атома, состоящей из нейтронов и протонов. Источниками данной энергии способны служить два физических процесса:

  1. Деление: ядра атомов распадаются на части. На основе этого процесса работают ядерные реакторы и атомные электростанции мира.
  2. Синтез: атомные ядра, напротив, сливаются вместе. Данная технология пока лишь находится в стадии разработки и экспериментов

Какова разница между атомной и ядерной энергией? Эти понятия обозначают одно и то же — являются синонимами в данном контексте.

Отдельно выделяется такое понятие, как ядерная (атомная) энергетика — низкоуглеводный источник энергии, основанный на ядерном делении и цепной реакции, главный источник которого — уран-235. Вообще же уран — природное сырье, металл, который содержится в горных породах, добываемых по всей планете.

Химический элемент обладает двумя первичными изотопами — ураном-238 и ураном-235. На первый приходится большая часть запасов, но он не ценен для атомной энергетики. Только уран-235 способен вступать в полезную цепную реакцию деления, необходимую для получения энергии. Его запасы составляют 1 % от всей урановой добычи. Чтобы повысить вероятность того, что ядра природного урана будут нужным образом делиться, его обогащают — проводят специальный процесс, позволяющий увеличить объемы содержания урана-235.

Энергетический баланс

Сейчас, основу мировой электроэнергетики составляют станции, работающие на углеводородах, точнее на газе. Доля «углеводородной» электроэнергии составляет примерно 2/3 от всего объема электричества, произведенного в мире. Мировые запасы газа оцениваются примерно лет на 100. Достаточно много на планете угля, но с ним есть ряд проблем: он довольно сильно коптит. Так в Китае уголь составляет основу электроэнергетики, и, по причине его сжигания на ТЭС, экологическая ситуация во многих китайских городах очень тяжелая. А системы очистки сильно удорожают стоимость киловатта. Кроме того ТЭС должны находиться вблизи угольных разработок, в противном случае его доставка тоже сильно увеличивает стоимость киловатта. Поэкспериментировать с этим попробовали в Украине, закупая уголь в ЮАР, ничего хорошего у них из этого не получилось.

Рейтинг стран по производству атомной энергии

Рынок мирной ядерной энергии изучает специальная организация — МАГАТЭ (Международное агентство по атомной энергетике). Именно International Atomic Energy Agency

  • устанавливает международные нормы безопасного для людей и окружающей использования атомной энергии;
  • поддерживает ядерные энергетические программы по всему миру — предлагает свою техническую помощь;
  • следит за тем, чтобы участники объединения использовали ядерные материалы и технологии в мирных целях;
  • помогает странам безопасно и грамотно вывести ядерные объекты из эксплуатации;
  • держит под контролем запас НОУ (низкообогащенного урана) в Казахстане — экстренный резерв, который следует использовать лишь в случае острой глобальной необходимости и только в мирных целях.

МАГАТЭ составляет ежегодные отчеты Nuclear Share of Electricity Generation, которые дают полное представление о странах-лидерах атомной энергетики. Из данных документов становится явным, что 91 % ядерной энергии вырабатывается 15 странами. Большая доля приходится на США — государство производит ⅓ от общего объема. Однако самой зависимой от атомной энергии считается Франция, где 70 % всей электроэнергии имеет атомное производство.

МАГАТЭ отчитывается, что ежегодно вырабатывается 2 553 208 гигаватт-часов атомной энергии. По ее объемам (ГВт/ч) и занимаемой доле рынка можно выделить пятнадцать стран-лидеров:

  1. США: 789 919 (30,9 %).
  2. Китай: 344 748 (13,5 %).
  3. Франция: 338 671 (13,3 %).
  4. Россия: 201 821 (7,9 %).
  5. Южная Корея: 152 583 (6 %).
  6. Канада: 92 166 (3,6 %).
  7. Украина: 71 550 (2,8 %).
  8. Германия: 60 918 (2,4 %).
  9. Испания: 55 825 (2,2 %).
  10. Швеция: 47 362 (1,9 %).
  11. Великобритания: 45 668 (1,8 %).
  12. Япония: 43 099 (1,7 %).
  13. Индия: 40 374 (1,6 %).
  14. Бельгия: 32 793 (1,3 %).
  15. Чехия: 28 372 (1,1 %).

Несмотря на кажущиеся великими масштабы, АЭС всей планеты вырабатывают только 10 % от общей доли электроэнергии.

Перспективы развития атомной энергетики[править]

Будущие перспективы атомной энергетикиправить

Планы изменения программ ядерной энергетики в 30 странах с действующими АЭС:

  • Строят новые блоки: Республика Корея, Япония, Бразилия, Франция, Индия, Финляндия, Китай, Украина, Пакистан, США, Аргентина, Словакия, Российская Федерация.
  • Планируют и строят новые блоки: Китай, Пакистан, Индия, США, Российская Федерация, Республика Корея, Япония, Финляндия.
  • Планируют строительство новых блоков: Южная Африка, Исламская Республика, Венгрия, Чешская Республика, Иран, Румыния, Канада, Соединенное Королевство.
  • Отказываются от проектировки новых блоков: Швейцария, Испания, Бельгия.
  • Лишь Германия закрывает все существующие энергоблоки.

Прогнозы производства электроэнергии АЭС.

Небольшие изменения в политике ядерной энергетикиправить

Резкое уменьшение мощности атомной энергетики прогнозируется к 2040 году, а затем возвращение к настоящим показателям к 2050 году. Уменьшение мощностей предполагается в западной, южной и северной частях Европы, и в Северной Америке. Незначительное увеличение ожидается на западе Азии и в Африке. Исключением является западная и центральная Азия, в этом регионе прогнозируется существенный рост. Действующих реакторов около 447 возраст половины из них выше 30 лет.
Приведенные прогнозы свидетельствуют о том, что к 2050 году значительного изменения установленной мощности не произойдет.

Сравнение высокого и низкого изменения экономикиправить

Несмотря на незначительное изменение мощности атомной энергетики, мировой объём ядерной генерации электроэнергии, все же повышается, хоть и очень медленно. Даже при таких показателях производство электричества на атомных станциях Азии растет достаточно быстро. Согласно данным прогнозам уровень ядерной энергетики по производству электроэнергии повысится на 2,4 % к 2030 году, к 2040 году на 3,4 %, а к 2050 года на 3,7 %.

За 2015 год в мире было произведено 55 975 тонн урана, этого достаточно, чтобы обеспечить 99 % годовых потребностей всех реакторов мира. Остальные реакторы существовали на уране, который был добыт ранее. Такая ресурсная база способна оправдать спрос на ядерную энергетику ожидаемый в 2030 году. Но для более высокого спроса необходимы новые средства, позволяющие обеспечить новыми ресурсами АЭС для увеличения производства ядерного топлива.

Инновации: усовершенствованные реакторы и топливные циклы.править

Самым ярким примером современного существующего усовершенствования АЭС является Блок № 4 Белоярской АЭС с реактором БН-800, то есть электрическая мощность реактора на быстрых нейтронах составляет 880 МВт. Он сдан в эксплуатацию 10 декабря 2015 года. Появление данного реактора является историческим событием для России, этот проект берет начало с первой половины 80-х годов ХХ века. Данные реакторы имеют большие преимущества для развития атомной энергетики, так как они обеспечивают замыкание ядерного топливного цикла, что свидетельствует о полном использовании уранового сырья, следовательно, экономии топливной базы ядерной энергетики. Плюс появится возможность уменьшения объёмов радиоактивных отходов.

До 2050 года быстрые реакторы скорее всего не будут играть главной роли, но станут важнее, позднее, когда для обеспечения энергетической устойчивости будет необходимо сокращение до минимума отходов производства и эффективное использование ресурсов урана.

Также явный прогресс в проектировании и создании пунктов захоронения высокоактивных отходов приведет к общественному и политическому признанию ядерной энергетики. Более положительное восприятие обществом данных технологий характерно для стран, с явными планами на уничтожение отходов и показан прогресс в создании работающих пунктов захоронения высокоактивных отходов. В ноябре 2015 года была одобрена первая лицензия на строительство подобного пункта захоронения отработанного топлива атомной станции «Онкало» в Финляндии, и начато строительство уже в декабре 2016 года. Летом 2016 года правительство Швейцарии разрешило строительство второго глубокого ядерного захоронения отходов на АЭС «Форсмарк». Также во Франции сейчас готовится следующая заявка на разрешение строительства ещё одного захоронения отходов со средней и высокой радиоактивностью на станции «Сижео».

КПД атомной электростанции

Наиболее высокий КПД (92-95%) – достоинство гидроэлектростанций. На них генерируется 14% мировой электро мощности.

Однако, этот тип станций наиболее требователен к месту возведения и, как показала практика, весьма чувствителен к соблюдению правил эксплуатации.

Пример событий на Саяно-Шушенской ГЭС показал, к каким трагическим последствиям может привести пренебрежение правилами эксплуатации в стремлении снизить эксплуатационные издержки.

Высоким КПД (80%) обладают АЭС. Их доля в мировом производстве электроэнергии составляет 22%.

Но АЭС требуют повышенного внимания к проблеме безопасности, как на стадии проектирования, так и при строительстве, и во время эксплуатации.

Малейшие отступления от строгих регламентов обеспечения безопасности для АЭС, чревато фатальными последствиями для всего человечества.

Пример тому авария на АЭС в Чернобыле и японское землетрясение в марте 2011 года, приведшее к аварии на АЭС, расположенной на острове Хонсю, в городе Окума, префектуры Фукусима.

Кроме непосредственной опасности в случае аварии, использование АЭС сопровождается проблемами безопасности, связанными с утилизацией или захоронением отработанного ядерного топлива.

КПД тепловых электростанций не превышает 34%, на них вырабатывается до шестидесяти процентов мировой электроэнергии.

Кроме электроэнергии на тепловых электростанциях производится тепловая энергия, которая в виде горячего пара или горячей воды может передаваться потребителям на расстояние в 20-25 километров. Такие станции называют ТЭЦ (Тепло Электро Централь).

ТЕС и ТЕЦ не дорогие в строительстве, но если не будут приняты специальные меры, они неблагоприятно воздействуют на окружающую среду.

Неблагоприятное воздействие на окружающую среду зависит от того, какое топливо применяется в тепловых агрегатах.

Наиболее вредны продукты сгорания угля и тяжёлых нефтепродуктов, природный газ менее агрессивен.

ТЭС являются основными источниками электроэнергии на территории России, США и большинства стран Европы.

Однако, есть исключения, например, в Норвегии электроэнергия вырабатывается в основном на ГЭС, а во Франции 70% электроэнергии генерируется на атомных станциях.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Ваш досуг
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: